
2015.07.15

Ryan Newton

DSLs in Haskell

Haskell features for DSL Construction
Fr

on
t-e

nd
M

id
dl

e-
en

d
Ba

ck
-e

nd

Scrap-your-boilerplate (SYB)

Compiler construction technologies

GADT ASTs for type preservation

Finally-tagless abstract syntax

Syntactic library

Nanopass tooling

Template Haskell: typed and untyped splices

Rebindable syntax

Alternate “Prelude”s

Type-safe observable sharing

Type classes + overloaded literals

Quasiquoters: foreign syntax blocks
Type-safe backends (e.g. LLVM)
Finally-tagless for mixed shallow/deep embedded exec.

You have cabal & GHC 7.8.4, right?
• Note, lots of competing “easy” Haskell installers:

• Haskell Platform
• Halcyon
• Stackage.org (“stack”)
• Kronos Haskell

• Now please grab this repo. Either URL:
• git@github.com:iu-parfunc/haskell_dsl_tour.git
• https://github.com/iu-parfunc/haskell_dsl_tour.git

https://github.com/iu-parfunc/haskell_dsl_tour.git

Themes & concepts… let’s talk about
Bundling

Scientific
Journals

Operating
system

Programming
Language

Answer: unikernels
Answer: DSLs

let +,*,..

loops

if

tuples

Good today: metaprogramming, embedding techniques
Still immature: fine grained capability tracking, phase polymorphism

virtual methods
dynamic alloc

dispatch
overhead

data indirection dynamic
types

Abstraction without regret

Second Theme: Type safety
• Front-end embeddings that use GADTs to

retain types.

• Middle end: GADT ASTs that propagate
types through compilation.

• Backend:
‣ Syntax-safe quasi-quote splices
‣ Type safe LLVM bindings

Main examples drawn from:

• Accelerate  
 

• (Mini / nano) Feldspar

Template Haskell: typed and untyped splices

Rebindable syntax

Alternate “Prelude”s

Type-safe observable sharing

Type classes + overloaded literals

Haskell features for DSL Construction
Fr

on
t-e

nd
M

id
dl

e-
en

d
Ba

ck
-e

nd

Scrap-your-boilerplate (SYB)

Compiler construction technologies

GADT ASTs for type preservation

Finally-tagless abstract syntax

Syntactic library

Nanopass tooling

Quasiquoters: typed syntax blocks
Type-safe backends (e.g. LLVM)
Finally-tagless for mixed shallow/deep embedded exec.

Haskell features for DSL Construction
Fr

on
t-e

nd
M

id
dl

e-
en

d
Ba

ck
-e

nd

Scrap-your-boilerplate (SYB)

Compiler construction technologies

GADT ASTs for type preservation

Finally-tagless abstract syntax

Syntactic library

Nanopass tooling

Quasiquoters: typed syntax blocks
Type-safe backends (e.g. LLVM)
Finally-tagless for mixed shallow/deep embedded exec.

Template Haskell: typed and untyped splices

Rebindable syntax

Alternate “Prelude”s

Type-safe observable sharing

Type classes + overloaded literals

• Type classes (simple overloading) 

• Rebindable syntax
• Alternate preludes

• Unsafe sharing observation on which
safe can be built (McDonell, ICFP’13)

• Template Haskell

When is overloading not enough?

• Needs a better story for: 

‣ data type definitions 

‣ pattern matching

Example: a concurrent data
structure DSL

• Small set of operations:
‣ define data types

• sums + products
• mutable locations + mutable arrays

‣ bind recursive functions
‣ basic operations

• readIORef, writeIORef, casIORef,
fetchAndAdd

Template Haskell for DSLs
• Paper: “Optimising Embedded DSLs

using Template Haskell”
‣ makes things easier when Haskell is the

target lang for the DSL
‣ (Yes, like LISP.)

• But I think the more compelling case is
handling declarations.

Final caveat

• Front end stuff should not over constrain a
DSL's fate
‣ Build multiple front ends:

• different languages
• different embedding technologies

‣ Build your core tech into an engine (VM) which
has a clean API.

• Examples:
‣ ArBB, Copperhead (2), Accelerate (in progress)

Quasiquoters: typed syntax blocks
Type-safe backends (e.g. LLVM)
Finally-tagless for mixed shallow/deep embedded exec.

Template Haskell: typed and untyped splices

Rebindable syntax

Alternate “Prelude”s

Type-safe observable sharing

Type classes + overloaded literals

Haskell features for DSL Construction
Fr

on
t-e

nd
M

id
dl

e-
en

d
Ba

ck
-e

nd

Scrap-your-boilerplate (SYB)

Compiler construction technologies

GADT ASTs for type preservation

Finally-tagless abstract syntax

Syntactic library

Nanopass tooling

Compiler construction is folklore
• ask 3 major authors/maintainers,  

get 3 stories
• Basics:

• algebraic sum types
• OOP hierarchies  

(Exp superclass, If subclass)
• expression problem

• Plus: generic traversal (SYB), binder
representation …

Cool compiler tricks in Haskell
• Finally tag-less

• Sum type “thinning” with class constraints
and phantom types

• Open unions / expression problem
(Syntactic) 

• SYB to walk trees, fv in 3 lines, not O(N) 

Finally tagless
• Parameterizes over syntax representation

• Remains agnostic to deep/shallow
embedding
‣ form an AST, if desired, OR
‣ just desugar into Haskell code  

(no explicit codegen step)

github.com/hakaru-dev/hakaru/

https://github.com/hakaru-dev/hakaru/blob/master/Language/Hakaru/Syntax.hs

Where’s the grand synthesis?
• My belief: 

• People have deployed so much
cleverness, that if you try all of the
techniques at once, your brain explodes. 

• But that doesn’t mean that we won’t
eventually figure it out.

Still not there yet, even solo

• A good nanopass story 

• One example tool: our p523 compiler
toolchain 

• Given grammar0 + delta1..deltaN, 

• Generates ASTs and common functions

Syntactic
• See nanofeldspar example

Prototype nanopass tool
• NO sophisticated types
• Codegen tool that generates dumb types
• SExp lang defs:

SYB techniques
• Haskell SYB libraries

‣ type directed
• Poor-man’s:

‣ (gtraverse tree fn combine)
‣ (fn exp fallthru) handle it, or…
‣ (fallthru exp)

• Even the latter gets the asymptotic
benefits
‣ nanopass codegen can create gtraverse

easily

Optimizations on GADT ASTs
• See mini-accelerate exercises

Multi-representation +
conversions

Pass 1

Pass 2

GADT
AST Pass 3 binary

down
conversion

ADT AST ADT AST

up
conversion

Code walkthrough
• See ./middle_end/multi-level_AST

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 10 100 1000 10000 100000

Ti
m

e
(s

)

Terms

Down conversion

Ghostbuster
Data.Typeable

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 1 10 100 1000 10000 100000

Ti
m

e
(s

)

Terms

Up conversion

Ghostbuster
Data.Typeable

Hint

Figure 8. Time to convert an expression in the Mini-Feldspar language (Section 2) with the given number of terms (i.e. nodes in the AST),
from original GADT to simplified ADT (left) and vice-versa (right). Note the log-log scale.

from an installed library, not interpreted from the current program,
thus forcing the user to split their code over multiple packages.12

Nevertheless, before Ghostbuster, this runtime interpretation ap-
proach was the only reasonable way for a language implemented in
Haskell with sophisticated AST representations to read programs
from disk. One existing DSL that took this approach is the Hakaru
language.13

7. Validating generated code
To trust automatically generated code to manipulate the users data,
ideally the user would receive a high level of assurance that the
translations are correct. In Section 10.1 of the supplemental ma-
terial, we show how to prove generated up and down functions
are correct for the Mini-Feldspar example, using simple struc-
tural induction. These proofs are extremely straightforward—if and
when Haskell has better support for applying formal verification
tools (beyond its own type system) to full-featured Haskell code,14

then it will be possible to generate these simple proofs and turn
Ghostbuster into a certifying code generator, which produces both
Haskell definitions and a proof of the round trip property.

8. Related work
The checkTyEq and Data.Typeable of Section 3.2, and also the
(casedict/'

⌧

) and TypeDict of our core language, are both sim-
ilar to the typecase/Dynamic approach in [1, 2]. However while
typecase allows querying the type of the expression being cased
on, it does not inject the type-level evidence about the scrutinized
expression into the local constraints the way that GADT pattern
matching (and our casedict) do.

Another closely related work is on staged inference [17], which
formulates dynamic typing as staged checking of a single unified
type system. While the mechanism is different, functions over
Ghostbuster STs defer type checking obligations until conversion
back to OT. Likewise, modern Haskell’s deferred type errors are
related, but are a coarse-grained setting at the module level and
hence not practical for writing code against GADTs while deferring
type checking obligations.

12 http://hub.darcs.net/jcpetruzza/hint/issue/9
13 https://hackage.haskell.org/package/hakaru
14 Tools for lifting Haskell definitions into Isabelle [26] and Coq [7] existed
once, but are now gone or unmaintained.

The Yoneda lemma applied to Haskell provides a method of en-
coding GADTs as regular ADTs.15 However, this encoding does
not offer the benefits of Ghostbuster simplified types because: (1)
the encodings include function types, which preclude Show/Read

deriving, and (2) the encoding cannot actually enforce its guaran-
tees in Haskell due to laziness (lack of an initial object).

F# type providers [23] are related to Ghostbuster in that both au-
tomatically generate datatype definitions against which developers
are expected to write code. Type providers do not include GADTs,
but deal with type schemas that are too large (e.g. all of Wikipedia)
or externally maintained (e.g. in a database) and must be populated
dynamically, whereas Ghostbuster deals with maintaining simpli-
fied types for existing GADTs.

Dependent typing Ou et al. [13] define a language that provides
interoperability between simply-typed and dependently-typed re-
gions of code. Likewise, the Trellys project [5] includes a two-
level language design where each definition is labeled logical or
programmatic. Because of the shared syntax, one can migrate
code from programmatic to logical when ready to prove non-
termination.

It is folklore in dependently typed programming communities
(Idris, Agda, etc.) that if you need to write a parser for a compiler,
you would parse to a raw, untyped term and write a type-checking
function (i.e. up-conversion) manually. To our knowledge there are
not currently any tools that automate this process. However, most
fully dependent languages make these type checkers easier to write
than they are in Haskell.

9. Conclusions and future work
We’ve shown how Ghostbuster enables the automatic maintenance
of simplified datatypes that are easier to prototype code against.
Surprisingly, this resulted in significant performance advantages in
addition to software engineering benefits. Because of these advan-
tages, we believe that in the coming years gradualization of type
checking obligations for advanced type systems will become an ac-
tive area of work and widely used language implementations may
better support gradualization of type-checking obligations directly.

15 The Yoneda lemma in Haskell is currently best explained in blog posts:
http://www.haskellforall.com/2012/06/gadts.html and
http://bartoszmilewski.com/2013/10/08/
lenses-stores-and-yoneda/.

12 2015/7/10

Scrap-your-boilerplate (SYB)

Compiler construction technologies

GADT ASTs for type preservation

Finally-tagless abstract syntax

Syntactic library

Nanopass tooling

Template Haskell: typed and untyped splices

Rebindable syntax

Alternate “Prelude”s

Type-safe observable sharing

Type classes + overloaded literals

Haskell features for DSL Construction
Fr

on
t-e

nd
M

id
dl

e-
en

d
Ba

ck
-e

nd Quasiquoters: foreign syntax blocks
Type-safe backends (e.g. LLVM)
Finally-tagless for mixed shallow/deep embedded exec.

Back-end

Quasi-quotation for C generation
• language-c-quote package 

‣ Actually C, CUDA, OpenCL support

 map (\x -> x + 1) arr

Reify AST

 Map (Lam (Add `PrimApp`
 (ZeroIdx, Const 1))) arr

Optimise

Skeleton instantiation

 __global__ void kernel (float *arr, int n)
 {...

CUDA compiler Call

Thursday, 22 August 13

 mkMap dev aenv fun arr = return $
 CUTranslSkel "map" [cunit|

 $esc:("#include <accelerate_cuda.h>")
 extern "C" __global__ void
 map ($params:argIn, $params:argOut) {
 const int shapeSize = size(shOut);
 const int gridSize = $exp:(gridSize dev);
 int ix;

 for (ix = $exp:(threadIdx dev)
 ; ix < shapeSize
 ; ix += gridSize) {
 $items:(dce x .=. get ix)
 $items:(setOut "ix" .=. f x)
 }
 } |]
 where ...

Thursday, 22 August 13

Type-safe LLVM bindings
• Haskell’15: 
 
 
 
 
 

• Preserves “Exp Int” all the way to LLVM IR

Type-safe Runtime Code Generation: Accelerate to LLVM

Trevor L. McDonell1 Manuel M. T. Chakravarty2 Vinod Grover3 Ryan R. Newton1

1Indiana University Bloomington

{mc

d

o

n

e

l

t

,

r

r

n

e

w

t

o

n

}@indiana.edu

2University of New South Wales

c

h

a

k

@

c

s

e

.

u

n

s

w

.

e

d

u

.

a

u

3NVIDIA Corporation

v

g

r

o

v

e

r

@

n

v

i

d

i

a

.

c

o

m

Abstract
Embedded languages are often compiled at application runtime;

thus, embedded compile-time errors become application runtime

errors. We argue that advanced type system features, such as

GADTs and type families, play a crucial role in minimising such

runtime errors. Specifically, a rigorous type discipline reduces run-

time errors due to bugs in both embedded language applications

and the implementation of the embedded language compiler itself.

In this paper, we focus on the safety guarantees achieved by

type preserving compilation. We discuss the compilation pipeline

of Accelerate, a high-performance array language targeting both

multicore CPUs and GPUs, where we are able to preserve types

from the source language down to a low-level register language in

SSA form. Specifically, we demonstrate the practicability of our

approach by creating a new type-safe interface to the industrial-

strength LLVM compiler infrastructure, which we used to build two

new Accelerate backends that show competitive runtimes on a set

of benchmarks across both CPUs and GPUs.

1. Introduction

Compiling a source language via a typed intermediate language

has compelling advantages over a conventional untyped compiler.

Carrying types can enable optimisations [32, 44], and it also helps

ensure compiler correctness. An optimising compiler for a high-

level language makes many passes over a single source program,

performing sophisticated and error-prone transformations—many

compiler bugs can be caught by type checking the intermediate

language after each transformation.

Several practical compilers today, including the Glasgow Haskell

Compiler (GHC), carry types through most or all of their compi-

lation pipeline. These types, however, are represented at the value

level inside the compiler. That is, the compiler’s abstract syntax

datatypes would include data constructors to distinguish, say, inte-

gers from floating-point numbers, such as:

data Type = Int | Float | · · ·

data Exp = Let (Var,Type,Exp) Exp | · · ·

This approach has several drawbacks: (1) as the program progresses

through the various compiler transformations, the value-level types

[Copyright notice will appear here once ’preprint’ option is removed.]

must be carefully manipulated to remain in sync with the terms they

annotate and (2) errors are only detected when the type checker or

verifier is run over the intermediate representation,1 which amounts

to testing the compiler for a given user program, not verifying that

the compiler preserves well-typedness in the intermediate language

on all possible inputs. Thus, bugs can lurk undetected [11, 47].

In Haskell, GADTs can be used to add a type level index to an

expression syntax tree—defining Exp t, rather than just Exp, to de-

note that evaluating the expression yields a value of type t, which

is checked during compilation. In fact, this is the canonical exam-

ple of how and why to use a GADT in Haskell. However, scaling

this technique up to a realistic language presents considerable chal-

lenges, and fully deploying the technique requires a full type-level

representation of the binding structure. Indeed, Accelerate [9, 31]

is the only example of a released compiler with users that employs

this technique, of which we are aware.

Unfortunately, a statically typed representation of terms is not

always enough. Code generation—the point where C, assembly,

or bytecode is emitted, often by appending strings together—is

another area where type-preservation is typically lost.

Of course, heavy-weight verification and proof-carrying-code

mechanisms can address these issues [24, 26], but they require a

vastly larger amount of effort. Moreover, these techniques have not

yet been scaled to high performance and parallelising compilers,

which are the target of our work.

On the other hand, a small number of popular compilers, such as

Clang/LLVM and GCC, are debugged by the sheer force of many

users. However, for young languages—such as Swift, Idris, Julia,

or Rust—this approach is simply not feasible, and embedded or

domain specific languages provide an especially extreme case of

many new compilers with small user bases. Our experience has

shown that most parallelisation-oriented DSLs developed over the

last several years are neither robust nor complete. We argue that

new compilers for embedded languages deserve more effort to

establish their correctness, even if for performance an unverified—

but widely-used—backend such as LLVM, C, or CUDA must be

part of the trusted code base.

C

a

n

y

o

u

t

r

u

s

t

y

o

u

r

c

o

m

p

i

l

e

r

?

GADT techniques are most read-

ily applicable to embedded languages because type-level informa-

tion is acquired “for free” from the host language type checker.

Yet, there remains the problem of maintaining this type-level infor-

mation throughout the entire compilation pipeline: from the source

program, through the optimisation stages, and finally to code gen-

eration. Our previous work dealt with the type-safe translation of

source programs from higher-order abstract syntax into a typed de

1In the case of GHC, this is only done while running GHC’s regression

test suite. CoreLint (GHC’s internal type checker) is switched off during

production use due to performance considerations.

—

D

R

A

F

T

—

D

R

A

F

T

—

D

R

A

F

T

—

D

R

A

F

T

—

1

2015/5/30

Type-preserving LLVM bkend

Here, Done injects a manifest term into the type, while Yield
captures a scalar functions that is used to construct an element
at each index. Note that our definition is non-recursive—Done is
not defined in terms of array computations Acc, but instead carry a
de Bruijn index Idx into the array environment.11 This allows our
representation to be embedded within producer terms in the second
phase, with the guarantee that an embedded scalar computation will
not invoke further parallel computations.

The bottom-up contraction of the AST proceeds by converting
terms into this representation, and merging sequences of produc-
ers into a single one. Smart constructors for each producer man-
age the integration with predecessor terms. Scalar functions are
composed using the simultaneous substitution method described
above (§5.1.2). For example, the smart constructor mapD, operating
on the delayed representation, implements the well known fusion
rule to reduce map f . map g sequences into map (f . g) is

mapD :: Fun aenv (a ! b)
! Cunctation aenv (Array sh a)
! Cunctation aenv (Array sh b)

mapD f (Done v)
= Yield (arrayShape v) (f �compose� indexArray v)

mapD f (Yield sh g)
= Yield sh (f �compose� g)

5.2.2 Removing obstacles
Equational fusion techniques need to be careful to spot fusion op-
portunities in cases where language constructs other than function
application intervene between the two fusible operations. In Accel-
erate’s internal language, the main obstacle is let bindings, as in
this example:

map f $ let xs = use (Array · · ·)
in map g xs

In this case, we want to float the let binding out to expose the
producer chain for producer/producer fusion. In general, we float
all let bindings of manifest data out across producer chains.

As the bottom-up contraction of the AST encounters manifest
array data, we collect those terms into the following structure:

data Extend aenv aenv' where
BaseEnv :: Extend aenv aenv
PushEnv :: Extend aenv aenv'

! OpenAcc aenv' a
! Extend aenv (aenv', a)

At the value level, this encodes a heterogeneous snoc-list of lifted-
out terms, while the type captures how an array environment in-
creases once we (eventually) bring these terms back into scope.
Moreover, it provides a type witness for how to weaken a term—
another simultaneous substitution (§5.1.2)—from one environment
to another, where these new bindings have come into scope but no
old bindings have disappeared.

sink :: Syntactic f
) Extend env env' ! f env t ! f env' t

sink env = weaken (v env)
where v BaseEnv = id

v (PushEnv e _) = SuccIdx . v e

Referring to our initial example, as we lift the binding of xs out
through the outer term, Extend captures how to bring map f into

11Similarly, all collective operations that appear inside scalar expres-
sions have already been lifted out and let-bound. After all, we don’t want to
execute an arbitrarily complex array computation once for every invocation
of a scalar function.

the same environment type as map g, so that we can apply the mapD
fusion rule from the previous subsection.

During AST contraction, our smart constructor for let-bindings
examines the bound term and proceeds as follows: (1) if it is
manifest data, add it to the list of floated-out terms stored in the
Extend structure; (2) if the binding can be eliminated, inline the
scalar fragments of the delayed array representation directly into
the body term; otherwise, (3) keep the let-binding in place, being
careful to maintain the structure of nested bindings, which would
otherwise increase the scope of bound variables.

Finally, we note that separating the representation of delayed
producers from the auxiliary binding structure is important for
efficiency, so that we only sink a term for (possible) fusion via
our smart constructors once, rather than at every analysis site.

6. Type Safe Code Generation
6.1 Bringing static types to LLVM
LLVM’s intermediate language (IR), in-memory, represents type
information only as a value-level data structure, as is common in
compilers. Instead, we want to track IR types as Haskell types in
the LLVM Haskell binding, such that we can statically guarantee
to only generate type correct LLVM programs—eliminating the
possibility of LLVM type errors at application runtime. To this end,
we use GADTs to define the LLVM instruction set:

data Instruction a where
Add :: NumType a �� reified dictionary

! Operand a
! Operand a
! Instruction a

Here, an Operand is an argument to an instruction, and can either
be local references (such as the temporaries %1, %2 that we saw in
Section 3.1), or constant values, and are defined in a similar manner
using type-safe GADTs. Instructions in this representation carry
reified dictionaries (§4.2) that can be inspected to reveal which
concrete type the instruction was instantiated with.

From well-typed Accelerate terms, we generate a well-typed
LLVM AST while preserving types. Only in the last step, when
we hand the program over to the standard LLVM (C++) library, do
we convert the LLVM types captured in the Haskell type system
into LLVM value-level types. To do so, we build upon the existing
llvm-general package,12 which provides FFI bindings into the
LLVM API to construct, manipulate, and compile the generated
code. We reflect LLVM types as values using an upcast type class
of the following form:

class Upcast typed untyped where
upcast :: typed ! untyped

instance Upcast (NumType a) LLVM.Type
instance Upcast (Instruction a) LLVM.Instruction

6.2 Representing complex types
Even when representing LLVM IR as GADTs and properly track-
ing types, individual LLVM instructions operate only on primitive
types such as Int and Float. Hence, we need to establish a map-
ping between instructions on scalar values to the much more ex-
pressive set of types characterised by Elt—which also includes
nested tuples and, moreover, is user extensible. As we discussed
before, for the sake of modularity, we require a strict separation
between the Accelerate frontend and the various backends. This is

12http://hackage.haskell.org/package/llvm-general

— DRAFT — DRAFT — DRAFT — DRAFT — 7 2015/5/30

where the representation types, which form the codomain of the
previously discussed type family EltRepr, come into play.

We define the LLVM IR representation of a surface type a by a
type constructor IR that is parameterised by a. In its definition, we
use the type family EltRepr to map the surface type a to its repre-
sentation type EltRepr a, which in turn is the type combining the
LLVM operands representing a.

data IR a where
IR :: Operands (EltRepr a) ! IR a

The constructor Operands, in turn, is a data type family wrap-
ping well-typed LLVM operands. Due to EltRepr, Operands only
needs to be defined over the closed set of representation types—
primitive types, unit, and pair—but in IR still supports the full
range of scalar surface types characterised by Elt.

data family Operands :: *
data instance Operands () = OP_Unit
data instance Operands Int = OP_Int (Operand Int)
data instance Operands Int8 = OP_Int8 (Operand Int8)

· · ·
data instance Operands (a,b)
= OP_Pair (Operands a) (Operands b)

This mapping from surface to representation types effectively en-
codes aggregate structures as collections of multiple scalar values.
As an example, a value of surface type (Int, Float) has repre-
sentation type (((), Int), Float), and a corresponding encod-
ing into IR as:

IR $ OP_Unit
�OP_Pair� (OP_Int hOperand Inti)
�OP_Pair� (OP_Float hOperand Floati)

The last piece of the puzzle is how to convert terms from this
encoding into the individual operands which serve as arguments to
LLVM instructions. Our reified dictionaries provide a solution here
as well, as we can inspect them to determine the concrete type of a
term, and thus learn how to unpack the encoding:

class IROP dict where
op :: dict a ! IR a ! Operand a
ir :: dict a ! Operand a ! IR a

instance IROP IntegralType where
op (TypeInt _) (IR (OP_Int x)) = x
op (TypeInt8 _) (IR (OP_Int8 x)) = x

This also explains why we require a data family for Operands.
A type synonym family wouldn’t have given us this one-to-one
mapping.

6.3 Mapping Accelerate to LLVM IR
Finally, we have the pieces necessary to translate our well-typed
Accelerate programs into well-typed LLVM programs. We con-
tinue our running example program inc from Section 4.1, show-
ing how to translate each fragment of the lambda abstraction
\x ! x + 1 into well-typed IR.

6.3.1 Primitive function applications
As discussed earlier, the addition operation is encoded with the
constructor PrimAdd, representing uncurried addition, which by
way of PrimApp is applied to its two arguments in pair form. To
generate the corresponding LLVM instructions, overall we require:

llvmOfPrimFun
:: PrimFun (a ! b) ! IR a ! IR b

llvmOfPrimFun (PrimAdd t) = uncurry (add t)
· · ·

Here, uncurry is overloaded to operate on the IR data structure.
Primitive scalar operations carry a dictionary reifying the con-
crete type of their arguments—here t a reified NumType Float
dictionary—which we can use as evidence to unpack IR Float
into Operand Float using the method of the previous subsection.
Armed with a pair of scalar operands, we can finally apply our well-
typed LLVM instructions from Section 6.1.

add :: NumType a ! IR a ! IR a ! IR a
add t (op t ! x) (op t ! y) = ir t (Add t x y)

The next subsections discuss how to generate the arguments for
the application, namely a fragment of type IR (Float, Float).

6.3.2 Constants
Scalar constants are defined in Accelerate using the following
GADT constructor:

Const :: Elt t) EltRepr t ! OpenExp env aenv t

Here, t ranges over all types in Elt: it is not limited to elementary
values. If t represents on aggregate type, the resulting IR will
consist of multiple elementary constants.

We can examine the structure of the embedded constant value
by reifying its type using eltType (§4.3). Pattern matching on
the resulting GADT allows us to walk over the structure of the
representation type of t, which consists of nested tuples formed
from unit, pair, and primitive scalar values.

constant :: TupleType a ! a ! Operands a
constant UnitTuple ()

= OP_Unit
constant (PairTuple tx ty) (x,y)

= OP_Pair (constant tx x) (constant ty y)
constant (ScalarType dict) x

= · · ·

When we encounter a scalar value we will be equipped with a rei-
fied dictionary dict, that can be inspected to uncover the concrete
type of the value x::a, and inject it as a fragment of LLVM IR.

6.3.3 Tuples
Our primitive function application construct PrimApp treats all op-
erations as unary functions. Referring to our example \x ! x + 1,
we must create a pair consisting of the constant 1 and the innermost
lambda bound variable x. Scalar tuples are defined in Accelerate
using the following constructor:

Tuple :: (Elt t, IsProduct t)
) Tuple (OpenExp env aenv) (ProdRepr t)
! OpenExp env aenv t

The type Tuple represents a data structure reifying the structure
of the ProdRepr type as a snoc-list constructed from () and (,).
Critically, since our definition of EltRepr captures its relationship
to ProdRepr, the conversion becomes straightforward.

llvmOfTuple' :: TupleType t
! Tuple (OpenExp env aenv) tup
! Operands t

llvmOfTuple' UnitTuple NilTup
= OP_Unit

llvmOfTuple (PairTuple ta tb) (SnocTup a b)
= OP_Pair · · ·

7. The Accelerate-LLVM Backend Framework
LLVM is a reusable framework, portable across diverse architec-
tures, and in the same spirit, we introduce the Accelerate-LLVM

— DRAFT — DRAFT — DRAFT — DRAFT — 8 2015/5/30

Frontend Multiple Backends First pass Second pass

CUDA.run

LLVM.run

FPGA.run

–
D

at
a

–
–

C
on

tr
ol

 –

Non-parametric array
representation

 → unboxed arrays
 → array of tuples
 ⇒ tuple of arrays

Surface language
↓

Reify & recover sharing
HOAS ⇒ de Bruijn

↓
Optimise (fusion)

Code generation
↓

Compilation
↓

Memoisation

Copy host → device
(asynchronously)

overlap

– GPU –

Parallel execution

– CPU –

Allocate
memory

Link & configure
kernel

Thursday, 22 August 13

Closing note:  
not just codegen, runtime too

